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Applications of group theoretical methods in the path integral formalism of nonrelativistic
quantum theory are considered. Analysis of the symmetry of the Lagrangian leads to the
expansion of the short time propagator in matrix elements of unitary irreducible
representations of the symmetry group. Identification of the coordinates with the group
parameters transforms the path integral to integrals over the group manifold. The integration
is performed using the orthogonality of the representations. Compact and noncompact rotation
groups are considered, where the corresponding path integral is embedded in Euclidean and
pseudo-Euclidean spaces, respectively. The unit sphere and.unit hyperboloid may either be
viewed as the group manifold itself or at least as a group quotient. In the first case Fourier
analysis leads to an expansion in group characters. In the second case an expansion in zonal
spherical functions is obtained. As examples the groups SO(#), SU(2), SO(n — 1,1), and
SU(1,1) are explicitly discussed. The path integral on SO(n + m) and SO(n,m) in blsphencal

coordinates is also treated.

I. INTRODUCTION

In the year 1948 Feynman'? had established the path
integration formalism of quantum theory. In field theories
the functional integration has been successfully applied in
the last two decades. In nonrelativistic quantum theory,
however, not much progress in solving exactly particular
problems has been made up to 1979. Only quadratic Lagran-
gians, including a 1/7* potential, could be integrated due to
their Gaussian nature. The breakthrough was made in 1979
by Duru and Kleinert,® who solved the path integral (in
phase space) of the hydrogen atom for the first time: In con-
figuration space this problem has been treated explicitly by
Ho and Inomata* (a critique of this work was made in the
paper by Kleinert®). For later calculations see Ref. 6. This
success has become possible by employing new techniques
. such as local time rescaling and dimensional extension. With
these tricks the list of exactly soluble problems has increased
rapidly. Common to all these is the fact that the dimensional
extension has been used for the realization of the dynamical
symmetry of the Lagrangian. For example, the dynamical
symmetry of the Coulomb>* and dyonium problem® has
been utilized by the Kustaanheimo-Stiefel transformation
being a nonlinear map from R? into R*. Various problems
having SU(2) as dynamical symmetry have become solvable
by using similar methods. Examples are the Poschl-Tell-

® Rosen-Morse,”!® Hartmann,"' and Hulthén poten-
tials.'> For noncompact groups only the SU(1,1) symmetry
of the modified PSschl-Teller potential®> and the Kepler
problem in a uniformly curved space'* have been realized.
Therefore the path integration on symmetry groups, espe-
cially on compact and noncompact rotation groups is of
great importance.

In the Schrodinger theory the solution of symmetric
problems is usually simplified by choosing proper coordi-

*' Dedicated to Hans Joos on the occasion of his 60th birthday.
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nates, e.g., spherical polar coordinates for spherically sym-
metric potentials. In the path integral formalism this transi-
tion is not that simple since for non-Cartesian coordinates
additional quantum corrections of order O(#) do appear in
the Lagrangian.'>!¢ Indeed, the Feynman integral in the
usual sliced-time basis>'” is only valid in Cartesian coordi-
nates. The aim of the present paper is to derive a general
procedure for the path integral treatment on compact and
noncompact rotation groups. For this we have to embed the
group manifold in Euclidean or pseudo-Euclidean spaces,

- respectively. We will proceed as follows.

In the next section we start with the definition of our
notation. For this we have to recall some properties of trans-
formation groups and their representations. Section III is
devoted to the extension of the Feynman ansatz in pseudo-
Euclidean space, in order to in¢lude the noncompact groups.
This makes necessary a modification of the usual regulariza-
tion scheme.'® In Sec. IV we introduce generalized polar
coordinates and develop two equivalent methods for per-
forming the angular integration. The first one is the charac-
ter expansion. In lattice gauge theories this technique, called
cluster expansion, is used extensively.'® Actually, the char-
acter expansion of Dosch and Miiller,’® where the cluster
expansion of a SU(2) Yang-Mills gauge theory on a two--
dimensional lattice is done, looks very similar to the expan-
sion formula of Junker and Inomata,'® where the path inte-
g_ral on the SU(2) manifold is expanded in SU(2) group
characters. However, it will be shown that SU(2) and
SU(1,1) are the only simple Lie groups where this technique
is applicable in ordinary quantum mechanics. In locking for
a method having a wider application we develop an expan-

- sion in zonal spherical functions. This technique does indeed

work on all homogeneous spaces, which may be viewed as a
group quotient G /H. In the last part of Sec. IV the connec-
tion between both expansions is shown. Finally we discuss
an example for both methods for compact and noncompact
groups. As compact groups we choose SO(#) and SU(2).
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For SU(2) we briefly review the path integral treatment in
the Poschl-Teller problem in order to perform the path inte-
gral on SO(n + m) in bispherical coordinates using the
group chain SO(n 4 m)580(m) XSO(n}. As noncom-
pact groups we will take SO(xz — 1,1} and SU(1,1). An ap-
plication of the SU(1,1) propagator is made for the modified
Pdschi-Teller potential leading to a path integral treatment
on SO(#n,m) by using SO(n,m) DSO(m) X SO(n). In the
Appendix we give the calculation of the Fourier coefficient
for the SU(1,1) expansion which has been omitted by us in
Ref. 13. :

I. TRANSFORMATION GROUPS AND THEIR
REPRESENTATIONS

In order to define our notation we repeat some proper-
ties of transformation groups and their representations.?*?!
A group G is called a transformation group of a space .#, if
one may associate with each element geG a transformation
x—gxon.# . If there exists for any x,yc.# an element g such
that gx =y, then G is called a transitive transformation
group and .« a homogeneous space.

Let G be a transitive transformation group of .#'. Fur-
thermore let .# be a linear vector space of functions f(x),
xe.# such that ‘

f(ReLe fgx)e”, (2.1)

for any geG. With f €. and geG a representatlon of the
group G'is given by

D(g)fix) =f(g~ 'x). (2.2)

~ Choose .# to be the Hilbert space of square integrable func-
tions with respect to a group invariant measure dy(x) on
# . Then the above representation is unitary relative to the
scalar product

ufd = [ 110 fi0duo. @3)
Such a representation is called a regular representation. For
compact groups the regular representation is decomposable
into a direct sum of unitary irreducible representations D’ of
this group on .#. (A generalization for noncompact groups
may be found in Chap. 5 of Ref. 21.) They form a complete
~ basis in the Hilbert space. /

Take D' (g) to be a unitary irreducible representation of
G'in the Hilbert space .#°. Furthermore, let H be a subgroup
of G which leaves the nonzero vector ge.?’ invariant, i.e.,

D'(ha=a, heHCG. (2.4)

Then D’ (g) is called representation of class 1 relative to H.
With each vector f.#° we may associate a scalar function

fig)y=(D(g)fa). (2.5)

Here /' (g) is called spherical function of the representation

D' (g). Choosing a basis {b,} in .¥ such that b, = a, the
matrix elements of D' (g) are given by

d...(g) =(Dg)h,.b,) (2.6)

Thed},, (g) are called associate spherical functions and the
£ (2) are the zonal spherical functions. Obviously,
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dio(gh) =diy(2), digth'gh)=di(g). (2.7

The spherical functions are eigenfunctions of the Laplace—
Beltrami operator on the homogeneous space .# =G/H.
The Hilbert space is spanned by a complete set {/} of associ-
ate spherical functions.

Finally we give the general Fourier analysis on compact
and noncompact groups®:

f@=34d, 3 frm(DdL (2),.
[] mn (28)

Fon (D) = f Ag)d, (g~ )de.
i .

The sum I, is to be taken over the complete set {/}. For
compact groups d; is the dimension of the representation.
However, we will call d, the dimension also in the case of
infinite-dimensional unitary representations of noncompact

groups. In this case we may take

S(LI"N
d

7

G
as a definition for d,. In (2.9) 6(/,{") stands for §¢(/ —1") in
the continuous and for &;;- in the discrete case, as noncom-
pact groups in general contain both series. For the contin-

uous series £, is replaced by an integral in (2.8).

lIl. THE FEYNMAN PROPAGATOR IN PSEUDO-
EUCLIDEAN SPACE

According to Feynman'? the nonrelativistic quantum
propagator K (r,,r,;t, — £, ) is given by afunctional integral
over the action, ‘

K(ry,r s, —t,) =J.

T, =¥(1,)

g = F(Ep)
=f exp{l f Ldt],@r(t).
T, =r(1,) ﬁ [
(3.1)

On the sliced-time basis the path integral in n dunensmns is
usually written as

Ty == r{#)

exp [éS [r}] r(t)

K(rb,i'a;tb t,))= llm H exp [—S]
N
N m n/2 N—1
X e dm,, 3.2
jl;‘[1 (21Tlﬁ€) jl=-[| ! ( )
with the short time action
= (m/2€) [(Ax)? + -~ + (Ax])?] = V(rpe.  (3.3)

For convenience we have chosen an equidistant time slicing
Ne=1, —1,,x* (u = 1,...,n) are the Cartesian coordinates
of rand Ax} = xf' —xi* ;.

In many physrcally interesting problems the Lagrangian
corresponding to (3.3) has a symmetry, which means that it
is invariant under group transformations of the symmetry
group. Therefore the Hamiltonian of the system may be ex-
pressed by Casimir invariants of the dynamical symmetry
group. The wave functions correspond to unitary irreducible
representations in the Hilbert space. This is the well-known'
procedure used by the algebraic method.?

M. Béhm and G. Junker 1979



However, the symmetry of the action may be also very
useful in the path integral treatment. Expanding the phase
exp{ (i/# )Sj} via the Fourier decomposition (2.8) in aseries
of unitary irreducible representations, the path integral may
be performed (at least partially) using the orthogonality
(2.9) of the matrix elements. The use of this group property
in path integration has already been suggested in 1970 by
Dowker.?* The above path integral (3.2) is defized on a Eu-
clidean space with metric g,, = §,,. As Feynman'® has al-
ready mentioned a generalization to an indefinite metric

o =diag{+ L., + L, — 1. —1}

p times q tlmes

is possible. The pseudo-Euchdean space will be denoted by
E, ,. With metric (3.4) the short time action is given by

5, = (m/26) [ (Ax})? + == + (AxD)?
— (Axf+1)2—- e (Ax,;Jrq)Z] —
In order to match the boundary condition

(3.4)

Vir;)e. (3.5)

lim K(ry,r,it, —1,) =8(r, —1,), (3.6)

=ty
the measure has to be chosen in the following way:

K(rb o ;tb - ra')

i i
= jim [ Mo {5
©

Now ) 2
N m )p/Z( mi )q/z N—1

m o dr+er..
! (2111'1‘56 ) AT

i=1

(3.7)

For p = n and g = 0 we recover the Euclidean propagator
(3.2). The short time action (3.5) still remains invariant
under some group transformation depending on F(r).
Therefore the above arguments are valid in the pseudo-Eu-
clidean space, too. Here the symmetry group will be in gen-
eral noncompact.

However, the above extension of the Feynman ansatz to
E, , requires some modification of the usual path integral
formalism. First we have to regularize the path integral in
‘the following way: Integration over compact coordinates
x'...x? is regularized, as usual, by a mass having a small
positive imaginary part, m—m+in (1> 0), that over the non-
compact (x**1 ..., xP*4 ), however, by a small negative imagi-
nary part of the mass, m—m-—i.

For g =0, i.e., the Euclidean case, this reduces to the
prescription of Langguth and Inomata.'® Second, due to the
topology of £, , the scalar product
(rr) = (x4 + ()P — (T — - — (22T 9)?

{(3.8)

can be positive, negative, or zero. Consequently,. the space
E, , may be divided into three different subspaces T, :

T,y ={r|(rr)>0}, timelike,

T_, ={r|(e;x) <0}, spacelike, (3.9)

T, =A{r|(r,;r) =0}, lightlike. '
Integration over Cartesian coordinates in E, , is similar to

the usual one in E,, . We still have Gaussian integrals. Up to
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signs the methods of path integration in Cartesian coordi-
nates on E, may be applied here similarly.>'”* The propa-
gator has contributions from space-, time- and lightlike
paths. And also from paths intersecting different regions 7, .

Systems that may evolve only along one kind of path are
also physically interesting. For example, quantum mechan-
ics on a space of constant negdtive curvature may be dis-
cussed in one region T, of E, _,, (see Ref. 26).

In this paper we will explore the path integral on such
subspaces T, €E, . For this we introduce generalized polar
coordinates r and 8%, p=1,...,p +g — 1. In general we
have

x¥=re"(0,.,07 1Y), v=1,..p+gq (3.10)
The functions ¢” define a unit vectorin T,
e=(el,...e?t9). (3.11)

The set of all such vectors forms a hyperbolmd H,eT, . We .
will call #°, the unit sphere of T,

#, =1{e|(ee)=a}, a=1,—-10. (3.12)
To be more explicit one should also distinguish the noncon-
nected regions of T,.
The short time action of the free systemon T, , reads in
polar coordinates (0<7; < w0, Ar; =71, —1; ;)
= + (m/2e)Ar} + (m/e)r; rj_l [13(ee;_1 2]
(3.13)

In T, we have §; — . (e,,¢;_, ymr;r;,_, /€. The corre-
sponding path’ mtegral separates into an angular and radial
part.

K(rpr,;ty — 1)

l s (=)
= H exP[ﬁ ],I=I1 (Zm‘ﬁe)

mi \2 N2 PHa—1lgp gr+a—tq
o) L7 i v
.

(3.14)

IV. PATH INTEGRATION IN GENERALIZED POLAR
COORDINATES

In this section we derive a general procedure for the
angular path integration on E,, using group theoretical
methods.

Let G be a transformation group of 57, i.e. "

e=ga. (4.1)

The n X n matrix representation geG (n = p + g) maps the
fixed vector a into the vector e, both being unit vectors on
#,. In (4.1) the vectors e and a have to be in the same
subspace T,. The unit sphere #°, is covered by all possible
rotations (4.1). For example, we have

= +1:a=(+10,.0) for# ., with x>0,
2= +1:a=(—10,.0) for #,, with x' <0,
2= —1: a=(0,..,0, + 1) for H _,, etc.

Note that to ac#, corresponds ae.¥ of Sec. I1..

A possible choice of the group G is one that contains
SO(p,g), GCSO(p,q). However, other groups like SU(u,v)
may do as well. For example, the unit sphere S in the four-

(4.2)
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dimensional space E, is isomorphic to the group manifold of
SU(2). Therefore instead of SO(4) we may choose SU(2) as
a transformation group of S° = $O(4)/80(3).

In this paper we restrict ourselves to the cases where
F°,, is isomorphic to the group manifold of G, 7#°, =G, or
J°, is given by a group quotient G /H, 7%, = G /H. Here
G = S0(p,q) and H is the stationary subgroup of a.

A. Expansion in group characters, 7, ~G

First we consider the special case 5, =G, where the
unit sphere is isomorphic to G. In order to find all rotation
groups having this property we use the necessary condition
. dim #°, = dim G. From Table I it follows that SO(2),
SO{(1,1), SU(2), and SU(1,1) are the only candidates.

- For the one-parameter groups SO(2) and SO(1,1) the
irreducible representations are one-dimensional [nonuni-
tary for SO(1,1)]. Obviously their characters and zonal
spherical functions are identical and therefore these groups
will be included in the general theory of the next section.
Actually the expansions reduce to the Fourier and Laplace
expansions, respectively.

Therefore we are left with the groups SU(2) and
SU(1,1). First we consider the group SU(2) which is iso-
morphic to §3 The infinitesimal generators are given by
Pauli matrices: '

01 0  —i 1 0
U'=(1 0)’ "2=(f 0)’ "3:(0 _1)‘
(4.3)
Defining
 s#=(ig1), 4= (—io), (4.4)

the isomorphism between points on the unit sphere xeS * cor-
responding to unit vectors e% (e’e., = 1) and the group
elements geSU(2) may be established by

; (ef; +ie) el + ef;) .5
=e.5, = : B : .
el VAR S (4-3)
e# = Tr(g,5%). (4.6)

Note that indeed detg, =1, gl g. =1 and therefore.

geSU(2). From Eq. (4.5) follows
Tr(g; 'g,) =2e, e, 4.7

The explicit identification of the coordinates will be given
later. '

The group manifold of SU(1,1) is isomorphic to the
hyperboloid"*

(e) =ere, = — (e') — (e¥)? + (&) + (e*)?, (48)
el = (81’82,83,94), e,u = ( - el: - 92333164)~
The infinitesimal generators may be givenby -
TABLE L Solutions for dim G = dim H,,.
G dim G dim H, dim G = dim H,,
SO(pg) (P+9dp+9-1)2 pt+g-1 pt+ag=12
SU(z,v) (u+v)2:—l 2€u+v)—1 ut+v=2
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0 i 0 1 1 0
1=\ o) TN o) BT —1)'

(4.9
The isomorphism can be established through
s, = (io,1), 5,=(—io"1), (4.10)
using the scalar product (4.8) on E, , :
e, +ies e, —iel
8 = :(ei+iei ei—fefi)’ (10
et =1 Tr(g,5). (4.12)

For g, being an element of SU(1,1) it has to fulfill the fol-
lowing conditions. The pseudounitarity g~ ' = o, g'a, is ob-
viously true. But in order to get det g = + 1 we must have
(e,e) = + 1. This means the hyperboloid 7#°_ | has to be
chosen. Again we find that the scalar product on #°__ , may
be written as a trace:

Tr(g; 'g,) = 2{(e,.e;). (4.13)

We conclude that for the case with G5, the corre-
sponding short time propagator depends only on Tr(g;), &
=g~} g and is therefore invariant under group transfor-
mations f(g) —f(ggg~"). Such functions are called central
functions and may be expanded in group characters.?®' The
Fourier decomposition (2.8) simplifies to

£&) =3 d " @AD,
! (4.14)

A = L J‘ @)y P*(g)ds.
d; Je

Applying (4.14) to the short time propagator,

m N2 mi \¥? i
K0 = (o) (o) e 5 9) @19

leads to

K(8€) = ZK:(r, ri_e)d " (@&). (4.16)

The radial short time propagator K, (7;,r;_;€) is deter-
mined by the Fourier coeflicient f(/).

Using the group properties

L gl gy (g gy 1 g

5417 -
= (—d—)‘l’”’(gj_11 g+1)s (4.17)
! }
X8 8 = Zd won (860 25 (82),
the angular integration can be performed.The 47, (g) are

the unitary irreducible representations of & in the Hilbert
space .# being infinite dimensional for noncompact groups.
Note that d(} in Eq. (3.14) is given by dQ = |#°, |dg, where
| #, | denotes the volume of #°,, . The resulting propagator
reads
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K(r,r;t, —t,)

= S K (Fyotasty — 1) Vi, (€)Y 5 (€,),  (4.18)
Lm,n
with
Yimn () =[d, d1,,(g), (4.19)
which we may call generalized harmonics. As for

G = SU(2) they lead to the monopole harmonics of Wu and
Yang.*" Here K, (r,,r,;t, — L,) is given by

K (ry,rt, — 1)

N—-1
H K(rpr,_pe) [[ rite'dr,.

N_.w =i =1

(4.20)

The expansions for the compact groups SO(2) =U(1)
~5"and SU(2) =& have been discussed in detail by Junker
and Inomata.'® The expansion of the SU(1,1) propagator in
E,, withmetric { + 1, + 1, — 1, — 1) hasbeen given by the
authors.'* A detailed discussion for SU(L,1) in E,, with
metric (4.8) follows in Sec. YI. The method of character
expansion has alsobeen used in the high temperature expan-
sion of field theories on the lattice.'®

Since as a homogeneous space 5%, usunally may be
viewed as a quotient G /H, we do need a general scheme for
performing the path integration. Such a method may be
found by using the expansion of the short time propagator in
zonal spherical functions.

.B. Expansion in zonal spherical functions, %, =G/H

In this subsection we consider the case %, = G/H,
where the unit sphere is given by a group quotient. The sub-
group HCG is the little group of a, i.e., ha = a, hcH.

With (4.1) the scalar product in the short time action
(3.13) may be written as .

(e;e;_,) = (gag_,a)= (g,-Z'; g;aa). (4.21)

- The short time propagator (4.15) again depends on the

group element

& 23}:11 §; (4.22)
and is invariant with respect to left and right transforma-
tions of the subgroup H:

K(hg;h ~'e) =K(§;;€), heH. (4.23)

Functions having this property may be expanded in
zonal spherical functions of the representation of class 1 rela-
tive to H (see Ref. 20). The angles 6 can be identified with
the group parameters of G which do not belong to the sub-
group H. As by construction #°, =G /H, dim 3,

=dim G — dim H, this identification is always possible.

For functions having the property f{hgh —'} = f(g) the

Fourier decomposition (2.8) simplifies to

@)=Y d, diy @FD,
X (4.24)

Fi0) =f flg)d % (g)dr.
K

In (4.24) the integration over the subgroup H has already
been performed using dg = dT" dh. Here dT” and dh are the
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normalized measures of #°, and H, respectively. Note that
here df} is given by |7, |dT.

Since the short time propagator (4.23) belongs to this
class of functions the expansion yields

K(g};e) EKI( i j—-l’e)dl d (g;); (4'25)
where the radial short time propagator Ki(ryr; o15€) is
again determined by the Fourier coefficient f(/).

Using the group properties

d i (g) —Zd’ o(g)d ® (g_ ),

(4.26)

1)
J- d 0 (8)d 5% (8)dl = ;’" (L1,

!
the angular path integration can be performed. The result is

K(ry,ro5t, —2,) ?ZKl(rb:raEtb —1,)Y,,(e) Y}, (e,),
Lm
(4.27)
where _
Y, (e) =.d d,(g) (4.28)
are the hyperspherical harmonics on %°,. Note

K, (r,r,:t,
(4.20).
Since any unit sphere &, in E,, can be viewed as a
quotient G /H, the expansion in zonal spherical functionsisa
general method for performing the path integral on 7#°,,. As
examples we will discuss the cases G =80(n) and

SO(n — 1,1) with H =80(n — 1).
C. Equivalence of both methods

—1t,) is the remaining radial path integral

Above we have discussed two different methods for the
path integration-on homogeneous spaces. However, as the
expansion in zonal spherical functions will always work by
construction there arises the question of whether both meth-
ods are equivalent or not. In the following we will show that
they are indeed identical in the cases where the character
expansion does work.

.According to Maurin (Ref. 21, p. 237fF), a character of
a compact group H can be considered as a zonal spherical
function on the group G = H X H. The homogeneous space
G /H may be identified with H. For Abelian groups G the
characters are also zonal spherical functions of G. Here G
need not be compact.

Restricting ourselves to simple Lie groups, the only is0-
morphism having the above structure is D,~A4, XA, (Ref.
28). The following isomorphisms are obtained:

SO(4) =SU(2) xSU(2)/Z,,
S0(2,2) =SU(1,1) xSU(1,1)/Z,.

(4.29)

With SU(2)/Z,=~50(3) and SU(1,1)/Z,=80(2,1) we
identify the group manifolds of SU(2) and SU(1,1) with the
quotients SO(4}/80(3) and SO(2,2)/S0(2,1), respective-
ly. Therefore the discussion of SU(2) and SU(1,1) in Sec.
IV A contains all simple Lie groups where the expansion in
group characters works. By Marinov and Terentyev?? the
fact that the path integral over the SU(n) manifold with
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n>2 cannot be embedded 1nto a flat space has already been
noticed.

V. EXAMPLES FOR COMPACT GROUPS
A. Path integration on SO(n), 77, =S0{n)/S0(rn 1)

The path integral over S~ ' = SO(n)/SO(n — 1) has
been discussed by Marinov and Terentyev’® for the first
time, see also Refs. 10 and 31. However, up to now no explic-
it path integral treatment has been given.

Introducing spherical polar coordinates
-sin ¢(IJ,
“COoS ¢(1},

x!=rsing"—"--

(n=1D.. 0<r < e,

0<¢" < 27, (5.1
0™ <7 (kK #1),

x* =rsin g
X" = rcos ¢ 1

the Feynman ansatz on E,, reads
K(rb!ra;rb - t )

= lim ,1_1, e |5]
xﬁ( m )mNﬂlr’-’"dr.d"—‘ﬂ., (5.2)
s \2mifie) 2y Y Y
with
S, = (m/2e)Ar} + (m/eyryr,_ [l —¢;-¢,_ ],  (53)
d"'Q, =sin" "2 g{" = -sin® $f¥
X sin > dg{" ~ - --dgf". (5.4)

In order to perform the expansion of the short time pro-
pagator in zonal spherical functions we have to recall some
properties of the SO(n) representations.?’

A n X nmatrix representation may be ngen by a product
of rotation matrices

g:g"_l--.gk...gl’

g =g(6%) g (05 g (87),
where g, (8%) represents a rotation in the (i,i + 1) plane by
an angle 6 &

(%x"' ) ( cos @%sin@g* )(Xx" )
i+1) T\ —sin@Fcos 8%/ \x'+ 1/’

The n(n — 1)/2 parameters @ £ are called Eulerian angles of
the rotation g,

(5.5)

(5.6)

0<Br<a, i=23,..k

(5.7)
0Ok <2m, k=12,..,n—1
The associate invariant measure is
=Dk + 1)/72) i1
dg— k1-=Il IW’ H sin 6 dB ' (5.8)

Choosing a = (G,...,0,1) as the stationary vector, each point
eonS” ~ ! may be obtained by a rotation e = ga. The param-
eters 8 1,...,07~ ! of g are identical with the polar coordi-
nates ¢",...¢"~" of e. The stationary subgroup
H=80(n—1) of a is given by the -elements
h =g* (k #n — 1). Integrating (5.8) over all parameters of
H yields thie normalized volume element on $" ~:
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= [[(n/2)/27"*]dQ. (5.9)
The dimension of the unitary irreducible representation
D'(g) in the Hilbert space is

d=Q+n-2)[({+n-3)/1(n-2)],

1=0,1,2,... ' (5.10)

The zonal spherical functions depend only on the parameter
0"~} and are given by Gegenbauer polynomials,
dlig(@) = [(n=3)M/U+n—=31 ‘

'Xc(nfz)ﬂ(coserz:;) (511)

Note, that ®@==@ " — | 'is the angle between the vectorsaand e,
ie,a-e=cos@.

The associate zonal spherical functions are denoted by
d ‘0 (g), where M stands for the (n — 2)-tuple

M= (m,,mz,.‘..,m,,_z ),

IEm()}m]}' M, 3>|mn—2 |
An explicit expression is given by Vilenkin,?’
(5.25).

Now we are well prepared for the expansion of the short

time propagator. According to the general theory of Sec. IV, -
the action may be written as

S, = (m/2e)Ar} + (m/e)r;r,_ [ 1 -—gja-a] (5.13)

and depends only on the paramener ©=6;"1 ofg,. Actually
we have ;a+a = cos ©. For the Founcr analysis only the
factor exp(iz cos @), where z= — mr;r;_, /€fi, has to be
considered. We have

(5.12)

see also Eq.

exp{iz cos @} = i d; d b &)W, (5.14)
=0
A =f ¢=e0s g % (8.)dT. (5.15)
gn— 1 N
The integral can be simplified to
Ay = I'(n/2)T(n — 21!
2rl((n—1)/2)0(n +1—-2)
XJ. eZcsOC ("~ 2 (pos @)sin” "2 @ dO®  (5.16)
4} . ' .
and yields (p. 221 in Ref. 32),
A =T(m/2)(2/" 2%, o nyp (). (5.17)

Replacing the Bessel function J, (z) by the modified one
I,(iz) leads. to the well-known Gegenbauer formula
[v=(n—2)/2]:

greos® _ (3_)”r(v) S (14 v)C(cos O, , (iz).
iz =0

(5.18)
This formula has been used earlier for the path integration in
polar coordinates.'®3%>!
The short time propagator now reads
. T(n/2 '
K(§0) = ("/ ) z dy d by @)K, (ror, 36).

(5.19)
The angular path integral can be performed and we find
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K(rb ,l'a;tb - t )

- I;(:Jﬁ) S didio (8 8K (raurysty, — 1,).
l=0

(5.20)

The radial propagator is given by

1,(iz) = (2miz) =12 exp [m:‘iz"zit +o(3)}

(5.22)

The propagator (5.20) may be also expressed in terms of
hyperspherical harmonics [see Eq. (4.27)]

Imz<0&Imm>0.

| . Kttty — 1) = 3 K, (raresty, —1,) £0/2)
il I 211'"/2
Ky (rar3ty — 1,) = (rp7,)¢ 77 lim jnexp [——Sj] =0 '
N—w J jh # '
N m 172 N1 ZYIM(eb)Y (e )! (523)
) e
11;11 2mitie jl-—1 ! where
— 2 2 1 ﬁZE m, m m, _ n, _
szﬂAff—[( n )__]— (5.21) _ 0 i n— 4 n—3
, = . 5.24
2e 2 412mrr,_ | ; m,z=0m§0 m,,_z;=0m,,_1=z—m,,_3 | { )
where we have made use of the asymptotic formula'® The Y, (e) are given explicitly by°
¥ _
h—3
Yie(e) =4l J] {Crr 7 72 (cos g~ ¥~ V)sin™+ g = k= D}exp(im, _,4"),
k=0
n3 [ 9¥meitn—k—4 _ y
()P = { L) (k24 2m)
F(n/2) k<o \/1_1:1"(karl +m+n—k-2)
X [Tlmy +(?I——k—~2)/2)]2]- (5.25)

They form a complete set on S !
f D Y ()Y, (e)dT = 8,80y
Sn - l‘ .

The result (5.23) is identical with that obtained ear-
lier. '%1531-33 The SO(n) propagator has already been proved
uscful in the path integration of the n-dimensional harmonic
oscillator and the singular potential ¥(r) = — a/r (see
Refs. 8 and 31) which is sometimes erroneously called the n-
dJmensmnal Coulomb problem.

(5.26)

B. Path integration over the SU(2} manifold, #, = $?

The path integration over the SU(2) manifold has re-
cently attracted much attention in the Feynman quantiza-
tion of various problems having SU(2) as dynamical sym-
metry. Examples are thé nonsymmetric Rosen-Morse,°
Péschl-Teller,” Hartmann,"' and Hulthén potentials.!
Even for the dyonium problem® the expansion of the Feyn-
man ansatz in SU(2) matrix elements has been proved use-
ful. In this section we would like to show how this SU(2)
expansion, derived by Junker and Inomata,'® can be incor-
porated into the general scheme of Sec. IV.

The spinor representatlon of SU(2) is usually parame-
trized in Eulerian angles™:

L faierz 0
g(¢,9,¢)=(“’0 e_.-w)

( cos /2 sin9/2)(e"‘°’2 0 )
~8ind/2 cosf/2/\ 0 e—#2)’
O<p<2m, O<fO<m, O<P<dr (5.27)
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L

The matrix elements of the (27 + 1)-dimensional unitary

- irreducible representation in the Hilbert space are the well-

known Wigner functions,
dy.(g)=e ™d; (B)e™ ™,
J=0, L13.., —J<mn<J. (5.28)
The characters are
7 .

D gy — d’ _ sin(2J + 1)8/2 5.29
Y@ m;ﬂ, i (8) s (5.29)
where

cos (Q) = COS (f-) cos (M) (5.30)
2 2/ 2 .
The invariant volume element follows to be
dg = (1/16ﬂ'2)sin6d9dtp dip. (3.31)

Comparing (5.27) with the spinor representation (4.5) of
Sec. IV suggests the following parametrization of E,:

xl=r sin(8 /2)sin{(p — ¥)/2),

x* = rsin(6/2)cos((g — $)/2), gzg <o (5.32)
x3 .—:rcos(H/Z)Siﬂ(‘(‘P +1fl’)/2)' Oggbz’:j;r .

x* =rcos(8/2)cos((@ + 1)/2),
The corresponding Feynman ansatz reads ‘

K(r,rt,—1,)= hm H exp [-—-» ]
j=1
1 (=2-) 7 ar, 20
X Fidr 2 is
jl;[l (ZFIﬁE) jlz_[l L gj
m m 1 n .
S =:2—EAG?+-€—.r,-r,-A; [l ~—2-Tr(g,-)], (5.33)
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where we have made use of (4.7).

The expansion of the factor exp{z Tr(g)} in SU(2)
characters has already been mvestlgated in lattice gauge the-
ories' =

explz Tr(@)} = 3 (U + DLy, 20 @)
J
(5.34)

For 2z = mr,#;_, /iefi we find using the asymptotic formula
(5.22) for small €

oo 224 - L

1 27itie
27+ 1
sz(mrr:,_l) z( +D
i 3 2#e
exp| — |+ 1) +—= <D (g).
Xexp{ ﬁ[( + 1)+ 16] 1}1’ (&)
(5.35)

This is the expansion derived by Junker and Inomata.'® A
similar formula has been given by Duru.” It contains only
integer angular momenta J and therefore does not yield the
complete SU(2) propagator.

Performing the angular integration leads to

K(rbsra;tb - ta )

=S 2L K ity — 10X (858, (5.36)
5 2
where
K (P taity — 1) = (ryr, ) Y2 llm H exp[ ]
i=1
N o om )1/2 N
- dr;, (5.37)
X jl;[l (Zwiﬁe JI_Il
s_m 3 2fie
=—Ar— [J J+1 —_ .
S12€’ (+)+16mrr,

The result is identical with (5.20) for n = 4, as expected.

As already mentioned, the above expansion has been
used for various problems having SU(2) symmetry. As an
instructive example we may take the one-dimensional
Poschl-Teller potential®*

vy =@ (—Kiui+—’l—;-i) O<x<——. (538)
2m \sin’ax cos®ax 2a

A detailed discussion may be found in Refs. 8, 10, and 35.
Here we just state that for 8 = 2ax, the Feynman ansatz
reads

. il i
K(x, x5t —1,)=a Al{l_l.rri jl;[lexp [;SJ}
N m )1/2 N-1 1
X —do,,
11—-‘[1 (21?1‘”02 jl;Il /
(5.39)

with

1985 - J. Math. Phys., Vol. 28, No. 9, September 1987

'5§=£(1—cos j)—[. Kz.w‘%
a’e 2 sin(6,/2)sin(6; _, /2)
2 232 -
+ A —4 -}»] at . (540)
cos(6;/2)cos(0; ,/2) 2m

For x, AeN the one-dimensional path integral can be trans-
formed into that of the SU(2) propagator®!©:

K(xb’xa;tb - ta)

-y 2
ifa (tb_ta)}
m

)1f2

= -Z-— (sin 8, sin &, exp[ —

27 T
XJ. f Q(Gw@balbbiaa;oso;tb —1;)
6 Jo

xXexp {i(;i +

where Q(8,.¢,,%,;6,.0,0; tb
over SU(2),

K?’b"‘

= ¢)} dy, dg,, (541)

t,) is indeed a path integral

Q(Bb’q?b 530,008, — 1,)

i/2
-1 ()
jim ,[I, sl £} (e
N—1
—sin &, df; d , 5.42)
X jHI 2 sin @ ¥ (
S, = (m/a’)[1 -} Tr(g)]. (5.43)

The integration can now be performed and yields
K(xy x5t —1,)

= a(sin 6, sir_l'B,,)”2 QI+ 1

J=(x+ 2)/2

. J Jok
xd (A + kW2 (A —x)/2 (Bb )d (A +x)/2,(A —x)/F2 (60 )

#a’ (t,,—t)}

X exp -%(2.‘1r+1)z (5.44)

Here J is either an integer or a half-integer depending on
(A + «)/2. Shifting the summation index yields the stan-

dard form [in terms of Jacobi polynomials P ;*”(z)]

K(xb'xa;tb - t )

= 3 apl -2 B0 - v,

(5.45)
where

E, =Q2n+x+A+ 1D)2(#a>/2m),
a(2n+x+ A+ Drl(n+x + )12
(n+)ln+ )

Xsin®* V2 gx cos* * V2 ax P (1

(5.46)

¥, (x) =
— 2 sin? ax).
(5.47)

Path integration in bispherical coordinates: The above
solution of the Paschl-Teller problem now enables us to per-
form the path integral in bispherical coordinates
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x'=rsin(8/2)sina™ - -sin 'V,

: : 0 ’

x"=rsin(8/2)cos a** Y, ST

x"*'=rcos(6/2)sinB "~V 5in g,
x"t"=prcos(8/2)cos B~ 1,

The Jacobian is

dm+nr=

et ar L1 0 g
2 2

where d{} is given similar to Eq. (5.4).
The propagator of the free system in Em n

i N
K(r,,r;t, —t,) = lim X { } ( m
(Fortaity = 1) = lim I e ,-ll 2mritie

i=1

ogatl), B(l) < 277’
0<a®, BP0 <m(i#1).

m-10 S-d0d"" ' a)d" 0B,

(5.48)
(5.49)

(m+n)/2 N—1

H dm+nl..j’

j=1

(5.50)
| 6 o

&, vef) ﬂL?rjrj“.l c0s - cos ~- (1 — e, -ef), (5.51)

where e” and e’ are the unit vectors in the subspaces E, and E,,, respectively.
Guided by the group chain SO(m + n) DSO(m) XSO(#) thei integration over the anglesa'” and 8 can be performed

analogously to Sec. V A. We find

Klrprty —t) = 3 K,,,l(r,,,e;,;ra,ea;rb—ra)f%izlznw::Y (e T2 3 L)), (55)
LA=0
véhere
(1 —n)/2 (1 —m)/2
K,_A(r,,,o,,;r,,,ea;t,,—'ta)-_(r,,r sm—q-—sm ) (r,g,rcl cos&-cosf“—)
2 : 2 2
X li [’§J )N_I dr, L o (5.53
m —_ . adr, — - .
e ,Hle"p # g(zmﬁe JIRE A )
~ ) - 2
=2 AP+ 2y (l—cos ’) [ i + v} J e . (5.54)
2e € 2 sm(6/2)sm(6'u1/2) - cos(6,/2)cos(8,_,/2) 12mrr;_

withge =1+ (n —2)/2 and V== A+ (m 2)/2. The @ integral is now formal identical with the Posch]—Tel]er problem

leading to

Ki',}. (rbiab;rwga;tb —1t;)

e 6 (2—n)/2
= Z(r,,ra sinTbsin - )

6, 8 \2-mn
X (rb r, cos — cos—“)
2 2

>< 3 @I+

=+ v)2

, .
Xd o+ waw—wa2l0)dE ()

XK (ryoryity — £,), (5.55)

where K; (r,,r,;t, —,) is given by Eq. (5.37). Note that
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I
(5.53) can only be transformed into a SU(2) mtegral for

. even m and n.

Vi. EXAMPLES FOR NONCOMPACT GROUPS

Up to now we have dealt only with compact groups,
where the final results were already known by other meth-
ods. However, the general theory of Secs. IIT and IV was
formulated in such a way that noncompact groups can also’
be treated. Here we will choose as examples the n-dimen-
sional Lorentz group SO(n — 1,1) and SU(1,1).These non-
compact groups are often used for scattering problems in
quantuin theory. Both can be viewed as analytical continua-
tions of SO(n) and SU(2), respectively. Therefore we will
keep close to the calculation of the previous section.
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A. Path integration on G=S0(n—1,1), %, CSO(n—1, 1)/
SO(n)

Asalready mentionéd, thespace £, _, , having the met-
ric ' '

xl = rsinh ¢(nv 1) sin ¢(n—2). .
x*=rsinh¢"~ Vsing"—>--

sin ¢(1)’

-cos ¢, 0<r,

-1
x"=rcoshg¢" 1),

The Feynman ansatz reads

K(r,rt, —t,) = lim 1‘[ exp = }
N oo =1
(n—1)/2
X
JHI (Zfﬂﬁf)
mt 172 N—1
X{——] I d"r, 6.3
_ (2mﬁe) ,-I:Il g (6-3)
with
— (m/2e)Ar; — (m/e)rr;_ [1+ (58, 1) ],
(6.4)
dn—!ﬂ=sinhn72¢(n—l)sinn—3¢(n—2)_,_sin¢(2)-
X dgn= - -dg, O (69)

Before proceeding we have to recall some properties of
the SO(n — 1,1) representations.?

The n X n matrix representation may be glven by prod-
ucts of hyperbolic and ordinary rotations:

g=g"""h, (6.6)

where 2 is a n X n representation of the maximal compact-
subgroup H = SO(n — 1) given by Eq. (5.5), and

g("_l) =& (9”_1 gk(ﬂ"”l) "gn‘*l(B::} ) (67)

whereg, (82~ ') (k #n — 1), is arotation in the (k,k + 1)
plane [see Eq. (5.6)]. Here g, _,(82_1) is the Lorentz

* transformation
(x”" ') ' (oosh @r-} sinh @7 }) (x"‘ ‘)
x* ) \sinh@7=! cosh@zz1)\ x* J°
The parameter 67~ | is in the interval 0<0" ~1 < oo andall
others are limited analogously to Eq. (5.7). The invariant
volume element may be obtained by analytical continuation
of (5.8):
_T(n/2)

ﬂ.m‘z
xXdgr-1---dgr'dn,
dh is the corresponding measure of Ae80(n — 1).
Taking the northpole a = (0,...,0, + 1} as stationary
vector, each e on the spacelike hyperboloid #°_, may be
obtained by the transformation e = ga. The polar coordi-

nates ¢M,..." "D of e are given by the parameters
07— 1,..,0%=1 of g~ V. The little group is SO(n — 1).

(6.8)

h"—zﬂz_, 3111"‘3‘153"‘1

n-2

sin %!

(6.9)

1987 J. Math. Phys., Vol. 28, No. 9, September 1987

(re) = (x4 -+ (x" H - (x")? (6.1)
consists of topologically different subspaces. Here we will
perform the path integral on #°_ T, = {r|(r,r) <0}, the
spacelike subspace. The polar coordinates on T_, may be
introduced via

$=1 o
0<¢" < 2m,
0<o® < (k#1n—1).

(6.2)

r
Here #°_, is also called the (n — 1)-dimensional Loba-
chevsky space, denoted by A” ~ ' (see Ref. 20). Group theo-
retically we have

A"~1CSO(n — 1,1)/80(n— 1),

n—1

(6.10)

where A is amodel of a space of constant negative curva-
ture, similar to the way S" ~ ! represents a space of constant -
positive curvature. Quantum mechanics on spaces with neg-
ative curvature is of interest.® For example quantum chaos
is recently studied on such topologies.*

The normalized volume element on 5#°_,, in the sense
of f4_, f(r)8(r)dI’ = f(0), is

= [['(n/2)/20)d " 'Q. (6.11)

The unitary irreducible representations D' in the Hilbert
space are continuous,”°

fundamental series: /= — (n —2)/2 + ip,

— o <p< + w,

complementary series: —n + 2 </<0.
The zonal spherical functions depend only on the parameter
@=0""1, (e,a) = — cosh ® (see Ref. 20):

_go-»a T =172
sinh™~ 972 @

(6.12)

(3—n)r2

d o (8) PP, . (cosh ©).

(6.13)

Expressing the Legendre function P (2} in terms of Gegen- -

bauer functions shows the analytical continuation of (5.11)

explicitly:

(n—3)TI+1) cin-27
P(l +n—2)

The associate spherical functions d % , (g) may be written as

a product due to Eq. (6.6): '

{cosh &) (6.14)

di(g) =

dio=dko (@ )d ko (), (6.15)
with
K= (k:mls--l-’mn_3);
k=m.>>m ,
M= (my..sm,_3), 0> >, s | (6.16)

k=0,12,...
= (ksoy--uo)!

Actually, d %, (4) is the associate spherical function of the
subgroup SO(n — 1) [see Eq. (5.25)]. Hered k., ("~ 1)
again depends only on © and is given by*”
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dio (g D)
1)kon—5172 I{(n —3)/2)T(1+1)
F'n—-3T{U~k+1)
Fn—2)I'(n+k& —'3)]V2

k!
XSIHh(S—")/z(’BP(i (:)/g)—;zk(CQSh @). (617)

For the expansion in zonal spherical functions only the fun-

:(_...

X[(n+2k—3‘

‘damental series in (6.12) has to be considered. Vilenkin?®

distinguishes between even and odd dimension [e = ga, f(e)
being invariant under SO(# — 1) transformations]:

n=2m+2:
f(e) _ [( - 1)m22m+l1rm+l/2r(m+ 1/2)]~1

e T+ 2m) A
L) spg! ,
xf_w Tl @dp

n=2m+ 1:
f(&) = [(— 1)+ 12277 ()]~
TP+ 2m— 1)
Xf_w Td) |
(6.18)

X cot(wh)f(1)d k, (g)dp,
with!= — (n-2)/2 + ipand
D =f fleddl, (g7 hd"— Q. (6.19)

Using some group properties one finds the shorter formula-
tion

T T —2)/2 + ip)?
w-[ "
=] |r(fp)f2r(n-—1) :

x(l_ "=
F = f f(@)dby (g~ "dg,
SO(H — 1 ,1)

where the upper sign has to be taken for even dimensions and
the lower one for odd n, respectively. However, as the Le-
gendre function P* |, o (2) is symmetnc in the index p
(see Ref. 36), i.e., P 1/2+1p(z) P2, ,p(z), the sepa-
ration between even and odd # is obsolete, The i integration in
(6.20) is reducible to one along the p051t1ve P axis and the
substitution

)f(l)d (g)dp, (6.20)

(6. 21)

ytr—3)/2 I'(n/2)
w

Flcosh ®) = sinh” =92 @ f(g)  (6.22)

leads to the generalized Mehler transformation®”:

- .‘ — 7 2 .
f(f) - fl"((n |r?l)p/)2i:‘ IP” J; C(p)P (3 l/;)-ll-zrp (t)dp,
(6.23)
c(p) =r]t:)Pf3 L (. (6.24)
1

Here n may be an 'arbitrary complex nﬁmber
In the following we consider the Fourier analysis on
SO(n — 1,1) in the reduced form
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ID((r —2)/2 + lp)|2
= 2 !
fg) L TGy PR G — ADd g

with (/) given by (6.21). Comparlson w1th Eq. (2.8) leads
to the definition of the dimension
@, =2[|T((n —2)/2 + ip){>/|T (ip) |*T'(n — D].
(6.26)
Indeed analytical continuation of the dimension 4"’ for
SO(n) inl— —'(n—2)/2 + ip gives

(8)dp, (6.25)

. 1, for even n
SO(n) - (n—2)2 *
arod (—1) [coth mp, for odd n.
The above definition for d, is confirmed by the orthogonality

f dio (g)dféﬁ(g)dg=£(£_u')‘3n
SO(n — 1,1 d,

1

(6.27)

(6.28)

For the expansion of the short time propagator we re-
write the action (6.4) using (e, ;)= (gja,a)
= — cosh ©. Note, that now @ is the parameter 67 -1 of
the group element g, =g~} g;- Again only the factor -
exp{z cosh @} with z = imr;r,_, /#ie has to be considered.
For the Fourier coefficient we have (v = (3 — 1) /2)

F =£%lf = 1) "PY (1,
T

7 (6.29)

WithRev<1(=n>1) and Re z<0 (= Im m > 0) thein-
tegral can be performed (p. 194 in Ref, 32):

‘?‘(l) — F(”/Z) 2(n’—2)/2( _z)v-—- l/ZKiP( . Z),
¥

where K., ( — z) is the modified Bessel function of the third

kind. Usmg the asymptotlc form for |zj— e« and

larg z| < 37/2,

= [ e e ()]

(6.31)

(6.30)

the path integration results in
K(rblra ;tb - ta )

=] rz(::j) d di e '8, 0K, (ry, .01, — t,)dp, |
' (632)
with
K, (r,,r, t, —t,)
r, “"”’Zlunf ex [ ]
) N H ’ (6.33)

N7 i \V2N= ld _
X1I=I1 (Zﬂ'ﬁf) ,-I:I_n G
§7= — (m/2e)Ar} — [(p* + N 2mryr,_ | #e.

The propagator on a space of constant negative curvature:
For r=1 we set'® -

- mi exp[
2mhie

_;"ﬁ’:’f‘] =8(r,—r_,).  (634)
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The radial path integrél’can be performed immediately. The
final integration over the end position 7, yields the propaga-
tor on a space of constant negative curvature:

K{ebiea;tb _ta)
EJ‘ dpexp{—-l—Ep(r,, —t,,)}
o #i

XS Zu (4~ ZE (B0 )
k=0 .

I((n — 1)/2)
X a3y Yuar (@) ¥ty (€), (6:35)
where
T((n —2)/2+k + ip)
Z,($) =
e (9) T (ip)

Xsinh®="/2 ¢ P72~ k(cosh ).  (6.36)

The Y, (e) are the hyperspherical harmonics of the
(n — 1)-dimensional compact subspace [see Eq. (5.25)].
The Z,; (¢), already discussed by Bander and Itzykson,*®
obey the orthogonality relation

[(Zawrzzas=s0-p.
0

Finally we remark that the energy spectrum is continuous,
= (0* + }) (#/2m). (6.38)

It is, up to the additive constant, identical with that of a free
particle having the momentum p = #jp. Therefore the above
treatment may be a useful tool for solving scattering prob-
lems via path integration. The constant energy shift #/8m
has also recently been obtained by Balazs and Voros.”®

The path integral on the timelike hyperboloid #°__, can
be performed similarly and has been done in Ref. 8.

(6.37)

B. Path integration over the SU(1,1) manifold

As alast application we consider the Feynman propaga-
tor on the group manifold of SU(1,1). The unitary irreduci-
ble representations of SU(1,1) have been constructed by
Bargmann®® for the first time. In recent years the group

SU(1,1) has attracted much attention in the group theoreti-

cal approach to scattering theory.*® In path mtegral formal-
ism there exists much interest on SU(1,1) symmetries.*® A
first explicit path integral has been performed by the auth-
ors,®!? where the SU(1,1) manifold has been realized on the
upper sheet (x' > 0) of a timelike hyperboloid 7 ,. In this
section we consider quantum mechanics in E, ; with metric
(4.8).

The spinor representatlon is in analogy to SU{2) para-
metrized in the following way:

enp/2 0
soon =", un)
(cosh /2 sinh 0/2) (e"‘”2 0 )

X\sinh6/2 coshe/2) \ 0 e—#2)
0<p<2m, 0<f< e, O<Kyh<dm (6.39)
The associate invariant measure is
dg = (1/167%)sinh 0 48 dg dy. (6.40)

Comparison of Eq. (6.39) with (4.11) yields the following
explicit identification of the parameters with coordinates in
E,,:

x! = rsinh(@ /2)sin{(¢ — ¢)/2),

x? = rsinh(6./2)cos((¢ — 9)/2), gzgd”’ 641)
x* = rcosh(8/2)sin((¥ + ¢)/2), 0€¢zr7; 41)
x* = r cosh(6./2)cos(( + ¢)/2), '
The Feynman ansatz is then
K(r,, x5ty —1,)
. i Y m im
= Jm ,H. P [ } I (mﬁe)( 217‘?'55) 642)

N—
X H 7} dr, 27 dg;,

j=1
é

S_—Z—Arz—f— re_ [1—%'&(@.)],

where we have made use of the results of Sec. IV A,

As is well known, the unitary irreducible representa-
tions D*° (g) in the Hilbert space may be divided into two
fundamental and one supplementary series. The fundamen-
tal ones are (Bargmann’s notationis Kk =1+ 1)

ra
. . 1 . P?Os m= 09 "_" 1: i 2’"-: foro = 0,
conti = ——= 4
CHDToNS seHes 2 + IP[P>0s m= + %7 X %’---s fore = %,’ (6 3)
, , i 1 m=I+1l+2,.., foro= +
discret 1 l= ——=,0, —,1,...[ ’ .
reesene§ 2 2 m=-—-1—-1,—-1-2,., forc= —. (6.44)
The matrix elements are given by‘the multiplier representation
dl(g)=e"*d.; (B)e™ "™ (6.45)

The functions d La (g) are called Bafgmann functions and may be viewed as an analytical continuation of the Wigner

polynomials

1 rl+m+HI'(m—
(m—mil T +n+NDT (-1

diir(9) =

XFll=n+lL,—n—5l+m—mn; -—smh2(9/2))
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d?, (0)eSU(2). Explicitly they are given by hypergeometric functions for m>n:

)12
} cosh™ ™~ "i sinh”‘ - ”ﬁ
2 .2

(6.46)
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L p— [F(1~n+1)r(_n_;) 2

m =T —m+ DT (—m—1)

0 0

cosh™ t"—ginh™ —" L
2 2

XoF(1+m+ Lm — L1+ m — n; — sinh®(8 /2)). o (6.47)

The functions vﬁth 1 < m may be obtained via the relation d
d .2 *®°(9) by analytical continuation of Eq. (6.46) or (

=d}.(6).

(8) = (~ 1)~ "d " (8). For the continuous series one finds
6.47) in I> — 1 + ip. Note that for m = n we have d 4 (6)

According to a theorem of Bargmann,®® the Hilbexft space of square integrable functions on SU(1,1) is spanned by the
fundamental continuous series and the discrete series with />0. The representations D ~ >+ (g) are excluded.

From the orthogonality*!
' 8y
— 6mm' arm’ ’
2/ 41
8(p—p")
2p tanh w(p + io)

f d.5(g)do*(g)dg =
SU(L1)

follows the explicit Fourier debornposition

fg)y=> “ i 20+ 1) +fw dp2ptanh1r(P+fcr)]
0 B

o =0
XS Fr (D b, (g)}, k (6.49)
T (D) = £@)d *(g)dg. (650
SU(1,1)

Let $,,8,,3, be the parameters of & =g_\\g;, then the
trace in Eq. (6.42) is given by. $ Tr(g;) = cosh(6,/
2)cos((@; + ¥;)/2). Therefore we have to consider the ex-
pansion of the term exp{ — iz cosh(6 /2)cos({(@ + ¥)/2)}
with z = mr;r; | /#ie. The calculation, given in the Appen-
dix, leads to :

~

Fon (D) = /w2){K,, , | (26™?)
+ ( — l)mezl+ 1 (Ze_hrlz)}(smn. (6-51)

The cqmplete eﬁpansion reads

eKP[ - ETr(.s.')]
L2

=y [ S @+ +f dp 2p tanh 77(p +ia)]

o L2i=0 V]

X;zz“[KzH: (2) + (- 1)2""K,H+ (—i2) [y (g).
| | (6.52)

For the path integration we do need only the asymptotic
form for large |z] of the expression \

Fi(z) = (2/m2)[Ky o Giz) + (~ 1)Ky 1 (— iz)].
(6.53)

For this we have to distinguish between the discrete and
continuous case.
As the continuous series is a consequence of the non-

. compact nature of £, , we associate this series with the inte-

gration over the noncompact coordinates (x',x2), where the
mass has to be regularized by a negative imaginary part
(=Imz<0). If we look at the asymptotic behavior of
K, (iz), -
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fora: ( + [ )s
(6.48)

8Os Toro= (0,1),

2z z
we realize, that in Eq. (6.53) the first term is increasing
exponentially for |z| - o with Im z < 0 and the second one is
damping out. Therefore we may drop the last term for con-
tinuous / [ a similar argument has been used for the asympto-
tic form (5.22) in Ref. 16.]:

F‘go,vz)(z) ~ (z/ﬂ-z)[([_p (iz), fz[ large. (6.55)

The discrete series, however, may be associated with the
compact subspace (x°,x*) and the regularization requires a
positive imaginary part of the mass ( = Im z> 0). Using the
identity3?

K, (iz) =e~"™K,( —iz) — inl,( — iz) (6.56)

K, (iz) = /5% exp{—-fz+-”2—__~i+o(—1~)], (6.54)

‘we find

Fi(z) = (2/mz){(e 2" — g~ 27ty

XK21+ (—iz) — il (— iz)}: (6.57)

In the discrete case m and / are both integer or half-integer
and therefore

F{+(z)= (2/i) 0, | ( ~iz). {6.58)

For Im z > 0 the asymptotic formula (5.22) is appljcablé.
Explicitly we have in both cases

1 27 [27i\112
- 22
7z 277 iz \ z

2
Xexp{—zk—i(—zl-%-lz)——j—-iv(?(zzi)],

(6.59)

- whereImz>0foro= (4, — )andIm z<Oforo — (0,1).

The expansion (6.52) may be now applied to the short
time propagator. Using the orthogonality (6.48) the angular
integration can be performed and we find
K(r,.r, ity — 1)

- o QI+1) . 4

-3 {2 G e s
+J;°° dp 2ptanh21;ip+ia) X_.l/g+,'p,g-(ga_1gb)]
'><Kcr(rb’ra;tb - lila)] ’ (6-60)
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with The above SU(1,1) propagator has been recently ap- '

K, (Fy ity — 1) ’ f‘lifd to the one-dimensional modified Poschl-Teller poten-
ia
N . . .
— -3/2 15 __l__ o ‘ 2 1 2 __ 1 ’
oo [ fron 5 B (£ B dare
N (6.61) . 2m \sinh’ax  cosh”ax .
m \\/2 N1
11 (2 iﬁe) I 4, | (6.62)
Al \a pe ,
=t /=t ! e This case can be treated similarly to the ordinary Péschl-
S§7= mn Ar; — [(Zl +1)2— ———] e Teller problem of Sec. V B. Namely, for § = 2ax the Feyn-
e 412mryr; man ansatz
F .
1 1 Ee) T (=) i Lao ‘ (6.63
Kot — 10— tim [ oo L5} T ()" T o, e
ot~ =a Jim [ Mewe {25] 1 o) ML 2%
Ab, —1 2 2 '
Sj;—’:'—(1~cosh ’)+[_ <} - A —i ——1—].“"’26, (6.64)
‘ a’e 2 51nh(8j/2)s1nh(01-_ 1/2)  cosh(8,;/2)cosh(f;_,/2) 4| 2m

may be converted into a SU(1,1) path integral for x,A€N. Note that we have used the time reversal trick of Ref. 13:

K(xymait, — 1) = (a/4) (sinh 8, sinh 6,)"/? exp{ — (#ia®/8m) (¢, — 1,)}

2ar - ) . A .
<[ [ 0uptit00n —exeli(5E g+ 255 0)] dbo dos (665)
0 0
With (8@, :6.,0.0;t, — 2,) the SU(1,1) symmetry of (6.62) is realized:
0 8,,0,0 1 N exn [ L3 T (Y (7 ) T 2 (6.66)
3 :0; 14 _ta' = li 5 i : i? ’
Q( b:q?bﬂbb: a athd 2 ) Nl:r:n jI;Il CXp [ﬁ J}jl;[l (Zﬁlﬁdzf) . (zmze) jl;ll gl
5, = (m/a%) [1—} Tr (g)] S (6.67)

The integration gives

K(xb’}.:a;tb - 'ta )
= a(sinh @, sinh 6,)""?

(A—my2—1. . ‘ ! . i 2‘52(12
X{ Y @+DEGonu-0n (05)d &% 02, -2 (8 )eXp {”ﬁ_(ﬂ‘*' 1) > (t, — ¢, )]
I=0 '

o0 ) . . . 2 Zﬁz
+ [ dprpranh o +io)d 5 V34 02014 Vit an @oe| - - 2 1, s, i}
0 R .

# 2m
(6.68)
where 0 =0 (}) forx + A even (odd). With k& = 2ap we find the standard form
(A—-Kx)/2—1 . o .
Kpxoty —t)= 5> e 79 (x, )P (x,) + f dk e~ VE WD, (x, )DF(x,), (6.69)
X i=o 0
where the bound and scattering states are found simultaneously via path integration:
' , Ha’ - : st 3112 g ho
E=—(2+1) Y ¥, (x) = [a(2] + )sinh 2ax]'? d (] 2.1 - w12 (28%),
#k> j k AV e 1k s | (6.70)
E = o @, (x) = [E; sinh 2ax tanh 7 (-E + za)] a2, (2ax).

The energy cigenvalues and eigenfunctions are identical with that obtained by the algebraic method.*

The above technique is also applicable to the Coulomb problem in a space of constant positive curvature.'

Path integration on SO(n,m) in bispherical coordinates: The path integral solution of the modified Poschl-Teller problem’
may be used for the calculation of the Feynman propagator in £, ,, . Choosing the subspace T, ; with the parametrization
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e . S
x‘=rcosh-—z—sma("‘”-"smam,

x" =rcosh'—g- cosa'” Y, ' 0<rf0< w, . f
o 0<a B <27, (6.71)
x"+‘=rsinh—é-sinﬁ’(""”---sinﬁ'“’, 0<a®BP < (i£1), '

., 0
x"+’"=rsmh7cosﬂ‘”’“”'

the Jacobian is

d"'*-"r:r’"*""dr%sinh"‘“‘g-cosh"“’gdﬁd"*‘ﬂ(a)d’"—lﬂ(ﬁ), (6.72)
and the propagator reads
X i N iS N O\ i \m2 N—ld . _ (673)
Tasty — 1) = lim exp |5, , mtnp _
(Fotaity — L) = lim ,—13. p[ﬁ’l,ﬂ.(zmﬁe) (Zﬂﬁe) ,131 /
m m Ad,
_,Sj,-=£m}?+—;r}-r}_li(l—cosh-—2-’—)
m o 6, _ " o om .. 8 . 6._ '
+T$—rjrj_,coshicosh—%[l—ej_l-ej].—.—;-rjr'j&lsmh-iﬂ'—smh "2' [1—e ,-e]. (6.74)
After integration over the a‘®’s and 8" *s using SO (n,m) DSO(1n) X SO(m) we have
K(r,,rt, —2,) = i K (ry,0,57,,8,5t, —1,)
LA=0
T'(n/2) I'(m/2) ' |
X Y (€)Y ()22l Sy ()Y 3, (ef), (6.75
21?,‘,2;:1\:(:. IN()21T,"/2§&M(b‘AM( )

with

. eb @ \0—my2 62; 2] (1—n)r2
K (ry,0,;r,,0,5t, —t,) = (r,,ra sinh - sinh ; ) (rbra cosh BN cosh 7") : .

“gm [ 1 ig} 1 ( - )m( - )IM_I dr, —-df (6.76)
N"I']l_ _fl;Il exp{_ﬁ— 4 =1 27itie Zﬂﬁe j£[l ’:f ’_.i_"z"' §1 . . .
5 o7 | Ad, 2 S _
S =8+ 2y (1 cos )+[ it - v - ] #e

2¢ € 2 sinh(6)/2)sinh(6;_,/2)  cosh(6,/2)cosh(6;_,/2) | 2mrr,_,

(6.77)

where we have definedpy =4 + (m — 2)/2andv =1+ (n —2)/2.The remaining 6 integration may be transformed into an
SU(L,1) path integral. Indeed,it is formally identical with the modified Poschl-Teller problem. Using this result leads to

gb 6 \2—-ms2 91: 8 \2—mr2
K (ry,0,5r,,6,58 —1,) =2 (rbr,, sinh N sinh 2" ) (rbra cosh T-cosh T")

(v—p)r2—1 "
‘x[ ST @+ dp%otanh”(P“L"")]K’("”r";t" I
0

I=0

Xd%g+n)/z.(v—,u)/z (6,)d %::p)ﬂ,(v—,u,)/Z (6, (6.78)

where K (r,,r,;t, —t,) is given by Eq. (5.37) forJ = land o — Oorlfor (v —u) even or odd, respectively. For 7= 1 we have
the spectrum K, (1,1;¢, — ¢, ) =exp{ — (/) E (1, —t,)} with

E — [[(2l+ 1)2—11(#/2m), for[ discrete, (6.79)
T = P+ D (#2m), for I= — ] +ip. '
[
VI DISCUSSION AND OUTLOOK manifold has been embedded into Euclidean and pseudo-

~ Euclidean spaces, respectively. For this we had to generalize
In the present paper we have discussed the path integral the usual path integral formalism, where the construction is
on compact and noncompact rotation groups. The group very much similar to that of Feynman. Especially the regu-
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larizing scheme had to be modified in order to get well-de-
fined Feynman integrals. Restricting the discussion to a con-
nected subspace of the pseudo-Euclidean space the
introduction of polar coordinates leads to a separation into a
radial and angular part.

Application of group theory enables us to perform the
angular integration, where group theory is introduced
through identification of coordinates with group param-
eters. Writing the short time propagator as a function of
group elements, the Fourier analysis on the group leadstoan
- expansion of the propagator in unitary irreducible represen-
tations. We have found two methods. For dim G = dim 77,
the short time action may be written in terms of the charac-
ter of the fundamental representation, y (g’ ) =Trg'/.
Note that the short time action is formally identical with the
Wilson action in lattice gauge theories. The character expan-
sion, which has been already used extensively in lattice gauge
theories, is applicable. The angular integration reduces to an
" application of the orthogonality relation of group char-
acters. The only simple Lie groups that may be treated in
this way are SU(2) and SU(1,1). In the general case
dim G>dim #°, and the short time action is, by construc-
tion, invariant under transformations of the subgroup H as
2, = G /H. Here the expansion in zonal spherical func-
tions is a proper treatment and the application of their ortho-
gonality relation enables us to perform the angular integrals.
In both cases the remaining radial path integral is expressed
in terms of modified Bessel functions of the first and third
kind for compact and noncompact groups, respectively.

The formalism has been applied to the physically most
important groups. For the compact groups SO(n) and
SU(2) we have recovered known expansion formulas, which
have found many applications in path integration in the
recent years. For noncompact groups such an expansion has
been applied in path integration only by the authors.'* Here
we have chosen the n-dimensional Lorentz group
SO(n — 1,1) and the group SU(1,1). The SO(n — 1, 1) pro-
pagator is found to have the continuous spectrum of a free
particle and therefore may become an important tool in scat-
tering theory via path integration [e.g., Rutherford scatter-
~ing has a SO(3,1) symmetry]. The spectrum generating
. property of the SU(1,1) algebra, which has numerous appli-
cations in group theory, has been used in path integration,
too. With the SU(1,1) propagator the bound and scattering
states of various problems (here the modified Péschl-Teller
potential has been taken) may be found simultancously.

Besides nonrelativistic quantum theory the proposed
expansion methods may also be very useful in quantum field
theories. For pure Yang-Mills lattice gauge theories the
character expansion has already been used for a long time. It
would be interesting to know whether the expansion in zonal
spherical functions still works in theories with matter fields
like the symmetry breaking Higgs field. Another area of ap-
plications is the path integral formalism of statistical phys-
ics. Here the partition function is given as a functional inte-
gral over the Boltzmann factor exp{ — SH}. Especially for
scalar theories the expansion in zonal spherical functions
seems to be successful. How far both techniques may be ap-
plied in field theories of elementary particle and solid state
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physics is under present investigation by the authors.®
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APPENDIX: DERIVATION OF THE SU(1,1) FOURIER
COEFFICIENT

The formula (6.50) of the Fourier coefficient reads, for
fig) =exp{ — (iz/2)Tr(g)},-

Frn (D

lﬁwszfhf exp zzcosh(g)cosqj+¢]

Xe~™Pe " d Lo (G)sinh @ d@ dp dip. (Al)
Using the generating function of Bessel functions,
expl — iz cosh (i) cos m}
2 2
- z e+ Vg =iy, (z cosh (%)), (A2)
2= —w )

the integrals over ¢ and ¥ may be performed and yield

5
Fon () = "’"’f Jom (z cosh |[— )coshz’”(B/Z)
0

XF(l+m+1m—L1;— smhz(9/2))
X sinh @ d6, (A3)

where we have used the explicit form (6.47) of the Barg-
mann functions. Writing the Bessel function in terms of the
Meijer G function we find with x = cosh®(8/2):

}mn (l) = 5mnemiﬂ-mJ’ meg)g(—x_:i‘m, - m)
1 .

X,F (1 +m+ 1Lm — L1;1 — x?) dx. (A4)

This integral is a special case of the integral formula #7.831
in Ref. 44. The second set of integrability conditions gives for
Rel> —

. , . Z|m
- — imm gy 30
fmn(l) 8mne ) 62 ( ll“—l—lgms—m)‘

Using some properties*® of the G function the order may be

(AS)

~ reduced in three steps and the final G functions can be identi-

fied with modified Bessel functions of the third kind:

A 22| —m
6’"" —imm — iTm 21 (22 — i —m )
- 2771- ¢ [e G13 —4_9 15'_1—'1;_"1

; 2
— emmG %; (_4_' ehr

)
L—I—1,—-m
l,—l_i)

: 2
— S n [e‘l"""‘Gﬁg(%e""’

2mi
—G%g(é-e” I —1— 1)]

- % {Ky 1 (26™) +e Ky, (20 ")} -
(A6)
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